Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
105 <= nums[i] <= 105
If a + b + c = 0, then b + c = -a and c = -a - b
If we fix the value of a then we can loop through the remaining array for ‘b’ values and as a result ‘c’ (complement) values. Then we can increment the a value to the next element and repeat the loop.
Best Conceivable Runtime in this case is going to be O(n2)
My Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
seen, res = set(), set()
d = {}
# res = []
for i,target in enumerate(nums):
if target not in seen:
seen.add(target)
for j in nums[i+1:]:
complement = -target - j
if complement in d and d[complement] == i:
res.add(tuple(sorted([target, j, complement])))
d[j] = i
return res